Watch CBS News

Caltech Scientists Awarded Nobel Prize For Finding Ripples In Universe

PASADENA (CBSLA/AP) — Two Caltech scientists are part of a trio to win the Nobel Physics Prize for their roles in detecting faint ripples flying through the universe -- gravitational waves predicted a century ago by Albert Einstein that provide a new understanding of the universe.

Sweden's Royal Academy of Sciences announced that the winners are Barry Barish and Kip Thorne of the California Institute of Technology and Rainer Weiss of the Massachusetts Institute of Technology. Thorne and Barish both received calls from the Nobel committee early Tuesday morning.

The three were key to the first observation of gravitational waves in September 2015. When the discovery was announced several months later, it was a sensation not only among scientists but the general public.

The scientists were honored for a combination of highly advanced theory and ingenious equipment design.

Black Hole Merger Simulation
(credit: SXS)

Gravitational waves are extremely faint ripples in the fabric of space and time, generated by some of the most violent events in the universe. The waves detected by the laureates came from the collision of two black holes some 1.3 billion light-years away. A light-year is about 5.88 trillion miles.

"The first direct observation of gravitational waves ... is an extraordinary demonstration of scientific vision and persistence," Caltech president Thomas F. Rosenbaum said in a statement. "Through four decades of development of exquisitely sensitive instrumentation—pushing the capacity of our imaginations—we are now able to glimpse cosmic processes that were previously undetectable. It is truly the start of a new era in astrophysics."

The waves were predicted by Einstein a century ago as part of his theory of general relativity. General relativity says that gravity is caused by heavy objects bending space-time, which itself is the four-dimensional way that astronomers see the universe.

The German-born Weiss was awarded half of the 9-million-kronor ($1.1 million) prize amount and Thorne and Barish will split the other half.

Weiss in the 1970s designed a laser-based device that would detect gravitational waves. He, Thorne and Barish "ensured that four decades of effort led to gravitational waves finally being observed," the Nobel announcement said.

The laser device, called an interferometer, must be both exquisitely precise and extremely stable. "The beam must hit the mirrors precisely. They should hardly shake at all, not even when leaves fall from nearby trees," according to a prize background paper.

The announcement said Einstein was convinced that gravitational waves could never be measured. The laureates used laser devices "to measure a change thousands of times smaller than an atomic nucleus."

In a moment of poetry aimed at making the distant and infinitesimal phenomenon understandable to non-experts, the academy announcement said gravitational waves "are always created when a mass accelerates, like when an ice-skater pirouettes or a pair of black holes rotate around each other."

For the past 25 years, the physics prize has been shared among multiple winners.

Last year's prize went to three British-born researchers who applied the mathematical discipline of topology to help understand the workings of exotic matter such as superconductors and superfluids.

(© Copyright 2017 CBS Broadcasting Inc. All Rights Reserved. The Associated Press contributed to this report.)

View CBS News In
CBS News App Open
Chrome Safari Continue
Be the first to know
Get browser notifications for breaking news, live events, and exclusive reporting.